4,407 research outputs found

    On the orientation and magnitude of the black hole spin in galactic nuclei

    Full text link
    Massive black holes in galactic nuclei vary their mass M and spin vector J due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e. when the accretion episodes are randomly and isotropically oriented, or coherent, i.e. when they occur all in a preferred plane. Instead, we consider different degrees of anisotropy in the fueling, never confining to accretion events on a fixed direction. We follow the black hole growth evolving contemporarily mass, spin modulus a and spin direction. We discover the occurrence of two regimes. An early phase (M <~ 10 million solar masses) in which rapid alignment of the black hole spin direction to the disk angular momentum in each single episode leads to erratic changes in the black hole spin orientation and at the same time to large spins (a ~ 0.8). A second phase starts when the black hole mass increases above >~ 10 million solar masses and the accretion disks carry less mass and angular momentum relatively to the hole. In the absence of a preferential direction the black holes tend to spin-down in this phase. However, when a modest degree of anisotropy in the fueling process (still far from being coherent) is present, the black hole spin can increase up to a ~ 1 for very massive black holes (M >~ 100 million solar masses), and its direction is stable over the many accretion cycles. We discuss the implications that our results have in the realm of the observations of black hole spin and jet orientations.Comment: 14 pages, 7 figures, accepted for publication in Ap

    Neutrino-driven winds from binary neutron star mergers

    Get PDF

    A path to radio-loudness through gas-poor galaxy mergers and the role of retrograde accretion

    Full text link
    In this proceeding we explore a pathway to radio-loudness under the hypothesis that retrograde accretion onto giant spinning black holes leads to the launch of powerful jets, as seen in radio loud QSOs and recently in LAT/Fermi and BAT/Swift Blazars. Counter-rotation of the accretion disc relative to the BH spin is here associated to gas-poor galaxy mergers progenitors of giant (missing-light) ellipticals. The occurrence of retrograde accretion enters as unifying element that may account for the radio-loudness/galaxy morphology dichotomy observed in AGN.Comment: To appear in the proceedings of the conference "Accretion and Ejection in AGN: A global view, June 22-26 2009 - Como, Italy

    Neutrino processes in partially degenerate neutron matter

    Full text link
    We investigate neutrino processes for conditions reached in simulations of core-collapse supernovae. Where neutrino-matter interactions play an important role, matter is partially degenerate, and we extend earlier work that addressed the degenerate regime. We derive expressions for the spin structure factor in neutron matter, which is a key quantity required for evaluating rates of neutrino processes. We show that, for essentially all conditions encountered in the post-bounce phase of core-collapse supernovae, it is a very good approximation to calculate the spin relaxation rates in the nondegenerate limit. We calculate spin relaxation rates based on chiral effective field theory interactions and find that they are typically a factor of two smaller than those obtained using the standard one-pion-exchange interaction alone.Comment: 41 pages, 9 figures, NORDITA-2011-116; added comparison figures and fit function for use in simulations, to appear in Astrophys.

    Irreducible symplectic varieties from moduli spaces of sheaves on K3 and Abelian surfaces

    Get PDF
    We show that the moduli spaces of sheaves on a projective K3 surface are irreducible symplectic varieties, and that the same holds for the fibers of the Albanese map of moduli spaces of sheaves on an Abelian surface

    Casein phosphopeptides : from milk to nutraceutical

    Get PDF
    Milk and dairy products are known sources of bioavailable calcium for its association with casein, whose proteolysis produces caseinphosphopeptides (CPPs). CPPs are phosphorylated peptides able to bind and solubilise calcium. In human intestinal tumor cells differentiated in vitro toward an enterocityc phenotype, they also induce a calcium uptake. Moreover, in human in vitro osteoblasts, CPPs favour the mineralization of the extracellular matrix. CPPs can differently affect proliferation and apoptosis in differentiated and /or tumor intestinal cells. Due to all these properties, CPPs may be considered as potential nutraceutical/functional food

    A small deformations effective stress model of gradient plasticity phase-field fracture

    Get PDF
    A variational formulation of small strain ductile fracture, based on a phase-field modeling of crack propagation, is proposed. The formulation is based on an effective stress description of gradient plasticity, combined with an AT1 phase-field model. Starting from established variational statements of finite-step elastoplasticity for generalized standard materials, a mixed variational statement is consistently derived, incorporating in a rigorous way a variational finite-step update for both the elastoplastic and the phase-field dissipations. The complex interaction between ductile and brittle dissipation mechanisms is modeled by assuming a plasticity driven crack propagation model. A non-variational function of the equivalent plastic strain is then introduced to modulate the phase-field dissipation based on the developed plastic strains. Particular care has been devoted to the formulation of a consistent Newton–Raphson scheme for the case of Mises plasticity, with a global return mapping and relative tangent matrix, supplemented by a line-search scheme, for the solution of the gradient elastoplasticity problem for fixed phase field. The resulting algorithm has proved to be very robust and computationally effective. Application to several benchmark tests show the robustness and accuracy of the proposed model
    • 

    corecore